A novel NADPH-dependent oxidoreductase with a unique domain structure in the hyperthermophilic Archaeon, Thermococcus litoralis.

نویسندگان

  • András Tóth
  • Mária Takács
  • Géza Groma
  • Gábor Rákhely
  • Kornél L Kovács
چکیده

Thermococcus litoralis, a hyperthermophilic Archaeon, is able to reduce elemental sulfur during fermentative growth. An unusual gene cluster (nsoABCD) was identified in this organism. In silico analysis suggested that three of the genes (nsoABC) probably originated from Eubacteria and one gene (nsoD) from Archaea. The putative NsoA and NsoB are similar to NuoE- and NuoF-type electron transfer proteins, respectively. NsoC has a unique domain structure and contains a GltD domain, characteristic of glutamate synthase small subunits, which seems to be integrated into a NuoG-type sequence. Flavin and NAD(P)H binding sites and conserved cysteines forming iron-sulfur clusters binding motifs were identified in the protein sequences deduced. The purified recombinant NsoC contains one FAD cofactor per protein molecule and catalyzes the reduction of polysulfide with NADPH as an electron donor and it also reduces oxygen. It was concluded that the Nso complex is a new type of NADPH-oxidizing enzyme using sulfur and/or oxygen as an electron acceptor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome sequence of the model hyperthermophilic archaeon Thermococcus litoralis NS-C.

The hyperthermophilic archaeon Thermococcus litoralis strain NS-C, first isolated in 1985, has been a foundational organism for archaeal research in biocatalysis, DNA replication, metabolism, and the discovery of inteins. Here, we present the genome sequence of T. litoralis with a focus on the replication machinery and inteins.

متن کامل

Crystallization and preliminary X-ray diffraction studies of pyrrolidone carboxyl peptidase from the hyperthermophilic archaeon Thermococcus litoralis.

Pyrrolidone carboxyl peptidase from the hyperthermophilic archaeon Thermococcus litoralis has been crystallized in a form suitable for X-ray diffraction from ammonium sulfate or ammonium dihydrogen orthophosphate using the vapour-phase diffusion method. Crystals from both precipitants are of the orthorhombic space group P21212 with unit-cell dimensions a = 94.06, b = 149.06, c = 73.54 A. A comp...

متن کامل

Structural basis for the ADP-specificity of a novel glucokinase from a hyperthermophilic archaeon.

BACKGROUND ATP is the most common phosphoryl group donor for kinases. However, certain hyperthermophilic archaea such as Thermococcus litoralis and Pyrococcus furiosus utilize unusual ADP-dependent glucokinases and phosphofructokinases in their glycolytic pathways. These ADP-dependent kinases are homologous to each other but show no sequence similarity to any of the hitherto known ATP-dependent...

متن کامل

Molecular characterization of the genes encoding the tungsten-containing aldehyde ferredoxin oxidoreductase from Pyrococcus furiosus and formaldehyde ferredoxin oxidoreductase from Thermococcus litoralis.

The hyperthermophilic archaea Pyrococcus furiosus and Thermococcus litoralis contain the tungstoenzymes aldehyde ferredoxin oxidoreductase, a homodimer, and formaldehyde ferredoxin oxidoreductase, a homotetramer. herein we report the cloning and sequencing of the P. furiosus gene aor (605 residues; M(r), 66,630) and the T. litoralis gene for (621 residues; M(r), 68,941).

متن کامل

Crystallization and preliminary X-ray analysis of the trehalose/maltose ABC transporter MalFGK2 from Thermococcus litoralis.

Trehalose and maltose uptake in the hyperthermophilic archaeon Thermococcus litoralis is mediated by an ABC transport system. The heterotetrameric transport complex MalFGK(2), consisting of two membrane-spanning subunits and two copies of an ATP-binding cassette protein, has been crystallized. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 106.5, b = 150.5, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FEMS microbiology letters

دوره 282 1  شماره 

صفحات  -

تاریخ انتشار 2008